Downregulation of miR-384-5p attenuates rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through inhibiting endoplasmic reticulum stress.
نویسندگان
چکیده
Endoplasmic reticulum (ER) stress has been linked to the pathogenesis of Parkinson's disease (PD). However, the role of microRNAs (miRNAs) in this process involved in PD remains poorly understood. Recent studies indicate that miR-384-5p plays an important role for cell survival in response to different insults, but the role of miR-384-5p in PD-associated neurotoxicity remains unknown. In this study, we investigated the role of miR-384-5p in an in vitro model of PD using dopaminergic SH-SY5Y cells treated with rotenone. We found that miR-384-5p was persistently induced by rotenone in neurons. Also, the inhibition of miR-384-5p significantly suppressed rotenone-induced neurotoxicity, while overexpression of miR-384-5p aggravated rotenone-induced neurotoxicity. Through bioinformatics and dual-luciferase reporter assay, miR-384-5p was found to directly target the 3'-untranslated region of glucose-regulated protein 78 (GRP78), the master regulator of ER stress sensors. Quantitative polymerase chain reaction and Western blotting analysis showed that miR-384-5p negatively regulated the expression of GRP78. Inhibition of miR-384-5p remarkably suppressed rotenone-evoked ER stress, which was evident by a reduction in the phosphorylation of activating transcription factor 4 (ATF4) and inositol-requiring enzyme 1 (IRE1α). The downstream target genes of ER stress including CCAAT/enhancer-binding protein-homologous protein (CHOP) and X box-binding protein-1 (XBP-1) were also decreased by the miR-384-5p inhibitor. In contrast, overexpression of miR-384-5p enhanced ER stress signaling. In addition, knockdown of GRP78 significantly abrogated the inhibitory effect of miR-384-5p inhibitors on cell apoptosis and ER stress signaling. Moreover, we observed a significant increase of miR-384-5p expression in primary neurons induced by rotenone. Taken together, our results suggest that miR-384-5p mediated ER stress by negatively regulating GRP78 and that miR-384-5p inhibition might be a novel and promising approach for the treatment of PD.
منابع مشابه
The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells
The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH‑SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go‑go 1 (Eag1) potassium channel expression during p53-induced SH‑SY5Y apoptosis, and the regulatory involvement of microRNA‑...
متن کاملDifferential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells
Paraquat (PQ), a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson's disease in laboratory settings. Other compounds like rotenone (ROT), a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP(+)) have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aimi...
متن کاملNeuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells
BACKGROUND Mitochondrial dysfunction and oxidative stress are the main toxic events leading to dopaminergic neuronal death in Parkinson's disease (PD) and identified as vital objective for therapeutic intercession. This study investigated the neuro-protective effects of the demethoxycurcumin (DMC), a derivative of curcumin against rotenone induced neurotoxicity. METHODS SH-SY5Y neuroblastoma ...
متن کاملNeurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells
Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to v...
متن کاملMitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells.
Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 310 9 شماره
صفحات -
تاریخ انتشار 2016